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Abstract In this paper we propose a novel framework for the dynamic
allocation of jobs in grid-like environments, in which such jobs are dis-
patched to the machines of the grid by a centralized scheduler. We apply
a new, full resource-driven approach to the scheduling task: jobs are allo-
cated and (possibly) relocated on the basis of the matching between their
resource requirements and the characteristics of the machines in the grid.
We provide experimental evidence that our approach effectively exploits
the computational resources at hand, successfully keeping the comple-
tion time of the jobs low, even without having knowledge of the actual
running times of the jobs.

1 Introduction

Groups of distributed, heterogeneous computational resources, called Grids [9],
have recently emerged as popular platforms to tackle large-scale computationally-
intensive problems in science, engineering, and commerce. The desktop grid com-
puting technology permits to exploit the idle computational resources of a large
amount of non-dedicated heterogeneous machines within a single organization
or scattered across several administrative domains.

In order to properly exploit the potential of these grid systems, key ser-
vices such as resource management and scheduling are needed. Indeed, effectively
matching tasks with the available resources is a major challenge for a grid com-
puting system because of the heterogeneous, dynamic and autonomous nature
of the grid, and a great deal of research concerning scheduling strategies capable
of fully exploiting computational grids has been conducted.

In this paper, we propose a novel allocation scheme in which job and resource
characteristics are captured together in the scheduling strategy, without resort-
ing to the knowledge of the running times of the jobs, which usually are not
known in advance. To this end, each machine that joins the grid is represented
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by a d-dimensional speed vector, whose components are numerical values which
quantify features of the system such as CPU clock, and disk/network bandwidth.
Similarly, each user submitting a job characterizes the computational properties
of his task by giving the estimated percentages of how the operations of the job
will “distribute” among the features of the machines. For example, and with
respect to the three aforementioned features, a pure CPU intensive task might
be described with a triplet similar to 〈1, 0, 0〉, while a job dealing with a local
large data set might be represented by 〈0.4, 0.6, 0〉. Then, a quantity similar, in
spirit, to the inner product between the vector of the job and the speed vector of
a machine m provides a quantitative measure of the suitability of the machine
for the job, with the job being dispatched to the machine which guarantees the
highest score. Allocation is centralized, that is, one node in the system acts as a
scheduler and makes all the load balancing decisions, and on-line, as jobs must
be assigned upon their arrival. Moreover, scheduling is dynamic, since we allow
the grid scheduler to migrate a job (we assume we are dealing with preemptable

jobs) as soon as the completion of a job in a host or a variation of the load due
to the machine owner might make some re-assignments fruitful. (Hence, load re-
balancing is event-driven, while in most systems it is simply performed through
periodic rescheduling.) We consider a finite-size temporal window of job arrivals
with the implicit goal of keeping as low as possible the makespan of the schedule,
that is, the completion time of the job that finishes last.

Previous work already showed how taking into account all features of the jobs
in the scheduling activity leads to good performances. However, we argue that no
one of the existing resource-aware allocators relies upon a score mechanism for
machine-job pairs which is effective (in that it fully leverages knowledge about
job and machine characteristics to assign the former to the host that best meets
the user requirements), fair, dynamic, and easy to use at the same time.

Related work. Since most variants of the task scheduling problem are NP-
complete [10], a great deal of effort has been devoted to the development of ap-
proximation and heuristic algorithms (see, e.g., [12,17,20,5,15]). However, these
works make the strong assumption that perfect knowledge of how long each
job will run is known at the time of scheduling, while our strategy does not
require this knowledge; indeed users’ runtime estimates are notoriously inac-
curate [7], and it seems that users are generally incapable of providing more
accurate estimates [14], with the problem being worsened by the heterogeneity
of the machines of a grid. Moreover, the estimates required by our allocator to
the user are completely machine-independent.

For these reasons, most real grid brokering strategies rely on a suitable map-
ping of user jobs to hosts according to the requirements of the former and to the
properties of the latter. A number of grid middleware and management mech-
anisms have been designed to this end. Condor [18] provides a general resource
selection mechanism based on the ClassAd [21], a language that allows resource
owners to describe their resource and users to describe resource requests for
their jobs. Specifically, all machines in the Condor pool use a resource offer ad
to advertise their resource properties, both static and dynamic, such as CPU



type, CPU speed, available RAM memory, physical location, and current aver-
age load, and users specify a resource request ad when submitting a job. The
request consists of the set of minimal resources needed to run the job, along with
a field in which the user specifies the function to be maximized by the broker.
(ClassAd has also been extended to allow users to specify aggregate resource
properties, e.g., in [19].) Condor acts as a broker by matching user requests with
appropriate resources. However, we notice that our approach is simpler to use
for the user, as the information required for the matching is simply an estimated
repartition of the machine capabilities to be exploited. In Globus [8], users de-
scribe required resources through a resource specification language (RSL) that
is based on a predefined schema of the resources database. The task of mapping
specifications to actual resources is performed by a resource allocator, which is
responsible for coordinating the allocation and management of resources at mul-
tiple sites. The RSL allows users to provide very sophisticated resource require-
ments (while no analogous mechanism for resources exists), but this comes at
the price of ease-of-use. The Application Level Scheduling project (AppLeS [3])
uses the performance model provided by users to schedule applications. Key to
the AppLeS approach is that resources in the system are evaluated in terms of
predicted capacities at execution time, as well as their potential for satisfying
application resource requirements. In the Nimrod/G system [1] the scheduling
policy is driven by an economic model which supports user-defined deadline and
“budget” constraints for schedule optimizations, and maps a job to the lowest-
cost resource able to meet its deadline. Again, an effective utilization by the user
is not immediate. In the work of Khoo et al. [13], jobs and resources are mapped
in a multi-dimensional space, and nearest neighbor searches are conducted by
the scheduling algorithm, with a job being dispatched to its nearest machine in
such a space. While being quite similar to ours, their strategy does not consider
job relocation.

Our contribution. In this paper we introduce a new resource-driven allo-
cation scheme for grid environments, in which the scheduling mechanism assigns
jobs to machines that are best suited for their resource requirements without
knowing their actual running times. We describe two different schemes: the first,
called Greedy allocation scheme, greedily maps and relocates job to the ma-
chine which represents the best match, while the second, termed Social al-
location scheme, performs the choice that best affect the “social welfare”. We
set up a grid simulation environment to demonstrate the efficacy of the pro-
posed scheduling solution. Indeed, experimental results give evidence that our
algorithms perform effectively the allocation task, that is, the allocation is fair,
balanced, and the resulting makespan is kept low. Moreover, we show that the
second outperforms the first in many cases of interest for real-life scenarios.

Paper organization. The rest of the paper is organized as follows. Sec-
tion 2 describes the model and our algorithms for allocation and relocation. In
Section 3, experimental results are presented which provide evidence of the ef-
fectiveness of our approach. Finally, in Section 4 we draw some conclusions and
discuss directions for future work.



2 The Framework

In this section we first provide a simple but effective model of a desktop grid
environment, and then describe two procedures for job allocation and relocation
which assign a job to the machine that best suits the job requirements according
to two different criteria: a selfish one (from the point of view of the job), which we
simply call Greedy allocator, and a “more altruistic” one, the Social allocator.

2.1 The Model

We represent a computational grid as a collection of heterogeneous machines:
each machine m ∈ M can perform d > 0 types of “real-world” operations
(e.g., CPU instructions, read/write data from/to disk, receive/send data through
the network) at rates defined by its speed vector Sm. Specifically, Sm is a d-
dimensional vector where component Sm[i], for 0 ≤ i < d, represents the num-
ber of type-i operations that can be performed by m in a time unit (e.g., CPU
frequency, disk, network bandwidth). Each machine performs at most one oper-
ation at a given time instant, that is, we ignore any form of concurrency among
operations: this is a worst-case scenario since in general some operation types
can be (partially) performed in parallel on modern machines. To model the fact
that some of the computational power of machine m is used by its owner, we
introduce the owner load λm, with 0 ≤ λm ≤ 1, which represents the fraction
of resources of m devoted to the owner’s needs: in other words, we suppose that
all the rates in Sm are multiplied by a factor (1−λm). We allow the owner load
to change dynamically over time. Note that we are implicitly assuming that the
owner load impacts on each component of the machine. Of course, this might
not be true in specific scenarios, for example when the machine owner always
requires only a given type of resources (e.g. she just needs the CPU but not the
disk resources). However, since the grid does not know the owner’s computa-
tional requests, we choose to simply scale down all the components of a machine
by the same factor. It deserves to be remarked that in most of previous work, a
machine is either completely available (i.e., λm = 0) or completely not available
(i.e., λm = 1), and any intermediate status is not taken into account.

A job j, which consists of ℓj ≥ 1 operations of the various types, is described
by its composition vector, a d-dimensional unit vector whose component Cj [i],
for 0 ≤ i < d, represents the percentage of type-j operations, measured as mul-
tiples of W [i], where W is the d-dimensional weight vector. The weight vector,
which we assume to fix a priori, can be seen as a sort of “operation-exchange”
unit system between the various components. Indeed, it implicitly defines a com-
mon “logical concurrency” between the various components, where one “logical
operation” corresponds to W [i] “real-world” operations of the i-th component.
Then, job j contains at most ℓj ·W [i] ·Cj [i] type-i operations. We observe that
the model can be defined without the vector W , however weights are needed for
tuning the composition vector to reflect the actual effect on performance of each
component. For example, suppose type-0 operations are numerous but fast and
type-1 operations are few but slow: if W is not used (i.e., W [i] = 1 for each i),



we have Cj [0] >> Cj [1] even if their influences on performance are comparable.
Intuitively, Cj characterizes the computational properties of job j by giving the
estimated percentages of utilization of each machine subsystem.

A machine can execute an arbitrary number of jobs1, which are performed
according to a round robin scheduler which assigns fixed-size time slices to each
job, handling all processes without priority. For simplicity, we assume the time
slice to be small in comparison to the overall task length. Under these assump-
tions, the execution time t(j,m) of a new job j which starts on machine m can
be reasonably estimated by

t(j,m) =
ℓj(nm + 1)

1 − λm

d−1∑

i=0

W [i]Cj [i]

Sm[i]
, (1)

where nm is the number of jobs other than j running on m. (Note that both
nm and λm change dynamically, but we omit their dependence on time for ease
of notation.) Clearly, the execution time of a job j has to be proportional to its
length ℓj and it has to grow at the same rate of (nm +1), due to the fair resource
sharing mechanism. Conversely, it must be inversely proportional to the fraction
(1 − λm) of the machine power not utilized by the owner and thus at the grid
user’s disposal. Finally, the summation is justified by the assumption that the
execution time is split among the various components without overlapping.

Whenever nm or λm change during the execution of j, we first calculate the
number of remaining operations ℓ′j , and then update the estimated execution
time by replacing ℓj with ℓ′j in Equation (1). (We assume that the composition
of the non-executed operations reflects the composition vector Cj .) Throughout
the paper we denote by Jm the set of jobs running on machine m at the time
instant under consideration.

When a new job is submitted to the grid, it is handled by the allocator,
which reads its composition vector and assigns the job to a suitable machine
according to the allocation scheme of choice2. The allocation is dynamic because
we allow relocation of jobs upon the occurrence of events that modify the load
of a machine, in particular when a machine completes the execution of a job, or
when a owner load varies. In both cases, we suppose that the involved machine
notifies the allocator of the change taking place.

It is important to recall that the parameters that characterize machines and
jobs can be quickly estimated in a real scenario. The speed vector Sm of a new
machine m can be determined automatically, reducing the burden of its owner
willing to share the machine, through a microbenchmarking suite such as that
of [4]: specifically, once a machine m joins the grid, the system performs a round

1 Clearly, a job j cannot be executed on a machine m whose owner load λm is 1 (i.e.,
the machine is not available). Furthermore, if Sm[i] = 0 for some 0 ≤ i < d, then
machine m cannot execute a job j with C [i] 6= 0; for this reason, we suppose that
0/0 = 0 (e.g., in the subsequent equation).

2 For simplicity, in our model the allocation task is performed in a centralized fashion,
however nothing impedes to implement it in a distributed way, for example, to
improve the robustness of the whole system.



of microbenchmarking to derive the peak performance of m, which will be used
to derive its Sm. The same microbenchmarking suite, or faster heuristics on the
CPU usage, can be used periodically for computing the owner load λm of the
machine. To further reduce the specification burden to the user, the composition
vector Cj of a new job j may be chosen by the user submitting the job by
associating it to a label, corresponding to a certain composition vector. The label
might be selected from a small, predefined set of labels, each related to the most
common job types (e.g., CPU intensive jobs, jobs dealing with local large data
sets, etc.), thus relieving the user of explicitly specifying the composition vector
for his job (which additionally requires the knowledge of the weight vector). The
aforementioned set of labels and the weight vector W can be determined in the
initial set-up of the grid environment. We argue that we do not require the user
submitting a job j to provide an estimation of ℓj , as the allocators we are going
to describe do not rely upon its knowledge.

2.2 Allocation Procedures

In this section we describe two allocation procedures for our model which differ
on the score function used to assign jobs to machines. When a new job j arrives,
both allocators assign j to the machine m maximizing a given score function
f(j,m), which is differently defined in the two procedures. A key element in
our allocators is the notion of affinity which is a measure of the suitability of a
machine to execute a certain job. The affinity τ(j,m) of job j on machine m is
defined as

τ(j,m) =
1 − λm

(nm + 1)
∑d−1

i=0
W [i]Cj [i]/Sm[i]

,

where nm is the number of other jobs that are executing on m. The affinity
depends on the time instant in which it is computed, since nm and λm change
dynamically; however, for notational simplicity, we omit the dependence on time
from τ(j,m). As one can easily recognize, the affinity and the estimated com-
pletion time are related by the following formula:

t(j,m) =
ℓj

τ(j,m)
. (2)

The Greedy allocator relies on Equation (2), and simply sets its score func-
tion to f(j,m) = τ(j,m). Therefore, job j is assigned to the machine maximizing
its affinity, and thus minimizing its execution time (despite of the allocator be-
ing unaware of the actual job length ℓj). However, this selfish approach ignores
the fact that the execution times of the jobs running on m grow (or, by our
definition, their affinities decrease).

In order to reduce the latter negative effect, we can correct the score function
as follows, obtaining what we dubbed Social allocator:

f(j,m) = τ(j,m) −
∑

k∈Jm

τ(k,m)

nm + 1
.



The term τ(k,m)/(nm + 1) denotes the decrease in affinity of job k ∈ Jm (i.e.,
already executing on m) if the new job j is assigned to m. The above equation
provides a trade-off between the selfish approach where the job minimizes its
execution time, and a social approach where the job is assigned to the machine
where the execution times of preexisting jobs do not increase excessively.

In Section 3 we analyze experimentally the two approaches without reloca-
tion, and provide evidence that the makespan obtained with the Social allocator
is in general better than the one with the Greedy one.

2.3 Relocation Procedures

In this section we describe two relocator procedures, namely the Greedy and
Social relocators, which are similar to their allocation counterparts. They act
similarly when a machine status changes, but differ on the implementation of
function f(j,m,m′), which is used as a score for evaluating the migration of job
j from machine m to machine m′. We describe how f(j,m,m′) is implemented
by the two procedures after explaining the relocation mechanism.

The events that cause the invocation of the relocator are the following:

– The owner load of machine m increases. In this case, the relocator migrates
a job in Jm into another machine m′ in order to reduce the effect of the
variation; job j ∈ Jm and machine m′ are chosen so that f(j,m,m′) is
maximized.

– The owner load of machine m decreases or a job in m terminates its execu-
tion. In this case, the relocator moves a job j from machine m′ into m in
order to use the available computational resources of machine m and at the
same time to reduce the load of machine m′. Machine m′ and job j ∈ Jm′

are chosen so that function f(j,m′,m) is maximized.

To ensure that a prospective action leads to an actual improvement of the sys-
tem state, function f(j,m,m′) is expressed as a relative gain with respect to
the previous system state. This gain has to be greater than a given constant
threshold θ > 0. The meaning of θ is easy to understand: the lower θ, the more
likely relocations occur, and vice versa. This stipulated relative threshold aims at
modeling the cost of job migration, which also includes the intrinsic overhead of
each preemption-and-resume step. Moreover, after a single event, the above pro-
cedure can be iterated until no improvement can be obtained or the maximum
number of iterations N is reached (being N an a priori fixed constant).

In the Greedy relocator, f(j,m,m′) is given by

f(j,m,m′) =
τ(j,m′) − τ(j,m)

τ(j,m)
,

where the affinities are computed at the instant where the load of m changes.
In other words, the Greedy relocator moves the job j which maximizes its
relative affinity increment, that is, the job reaches the biggest relative decrease
in execution time. As for the Greedy allocator, this procedure does not take



into account jobs already present on the machine where the job is migrated,
whose execution times increase (and affinities decrease).

On the contrary, the Social relocator takes into account also the difference
between the increase in affinity of jobs on m (since the number of jobs decreases)
and the decrease in affinity of jobs on m′ (since the number of jobs increases).
The proposed score function takes the form

f(j,m,m′) =
α0(Σm − Σ′

m) + α1(Σm′ − Σ′
m′)

Σm + Σ′
m

,

where Σ′
m (respectively, Σ′

m′) and Σm (respectively, Σm′) denote the sum of
affinities of jobs in m (respectively, m′) before and after the migration of job j
from m to m′. The coefficients

α0 =
|Jm|

|Jm| + |Jm′ |
and α1 =

|Jm′ |

|Jm| + |Jm′ |

are used for balancing the number of jobs among machines when m and m′

contain similar workloads.
In the next section we show that the Greedy and the Social relocators

attain the same performances, independently of the adopted allocation proce-
dure.

3 Experimental Results

In this section we experimentally compare the allocators and relocators described
in previous section with a simple allocation scheme, referred to as Min-Num.
The Min-Num allocator assigns a new job to the machine with the minimum
number of running jobs at the arrival time, independently of job and machine
characteristics. Similarly, the Min-Num relocator invoked on machine m moves a
job from the machine m′ with maximum Jm′ to m if the load on m decreases (i.e.,
a job terminates its execution, or the owner load decreases), or moves a job from
machine m into the machine m′ with minimum Jm′ if the load on m increases
(i.e., the owner load increases); this invocation is executed at most N times for
each invocation, where N is a suitable constant. This allocator scheme can be
efficiently implemented, however it performs poorly as shown in the following
examples. All the experiments are carried out through a Java simulator, whose
source code might be obtained upon request to the authors.

We consider three types of operations: the components of a speed vector
represent, in order, CPU frequency (in GHz), disk bandwidth (in MB/s), and
network bandwidth (in KB/s). We consider two machine sets. The first one,
named synthetic grid, consists of four machines characterized by the speed vec-
tors S0 = 〈4, 100, 250〉, S1 = S2 = 〈2, 100, 250〉, and S3 = 〈1, 800, 250〉. The
second one, named AEOLUS grid, models the AEOLUS testbed [2] and consists
of 70 machines, whose speed vectors are given in Table 3 in the Appendix. The
synthetic grid is used to enlighten some properties of allocators and relocators,



while the simulations of the AEOLUS grid provide evidence of their performance
in a real-world scenario.

To the best of our knowledge, publicly available workloads like those in Feit-
elson’s Parallel Workloads Archive [6] do not consider job features such as those
required by our framework, and hence the composition vectors used in our ex-
periments are artificial, and described in Table 1. We note that C0 denotes a
CPU intensive job, C1 a generic job which uses all operations, C2 a network
intensive job, C3 and C4 disk intensive jobs. For simplicity, we say that a job
is of type i, for 0 ≤ i ≤ 4, if its composition vector is Ci. The weight vector
used in the experiments is W = 〈2 · 10−5, 10−1, 10−1〉. Since some studies (e.g.,
[16,11]) show that durations of real jobs are distributed according to a power
law, we generate job lengths using a discrete representation of a power law.

Type CPU Disk Network Description

C0 1.0 0.0 0.0 CPU intensive

C1 0.7 0.1 0.2 Generic (all operations)

C2 0.6 0.0 0.4 Network intensive

C3 0.5 0.5 0.0 Disk intensive I

C4 0.2 0.8 0.0 Disk intensive II

Table 1: Job composition vectors adopted in this section.

We remind that, when the load of a machine changes, the Greedy and So-

cial relocators perform job migration until the relative gain of the score function
f(j,m,m′) is bigger than θ (e.g., 5%), and no more than N job relocations might
occur. In Figure 1, we analyze the behavior of Greedy and Social relocators
for different values of N and θ, and of Min-Num for different N ’s. Each relocator
is associated with its respective allocator. We use the synthetic grid described
above, with the owner loads set to 0, and jobs described by composition vec-
tors C0 and C1, which arrive uniformly in the time interval [0, 100] s and whose
lengths are generated according to a three-step discretization of a power law dis-
tribution (the exact description3 is available in section “Job set 0” of Table 2).
We notice that all the relocators exhibit small fluctuations (about 1%) when N
or θ changes, and the Greedy and Social relocators are almost equivalent.
For these reasons in the following experiments we set N = 3 for decreasing the
computational cost of relocation, and θ = 10% for justifying the migration cost
(moving jobs with small score increments is not convenient since the migration
costs may be bigger than the execution time saved after relocation). The differ-
ence between our relocators and the Min-Num one is small in the analyzed data
set, however we later show that in a more general scenario the gap considerably
increases. We performed other experiments, which are not reported for lack of
space, where we analyze any allocator/relocator combination: in all cases the

3 In the paper we denote by N (µ, σ) a Gaussian random variable with mean µ and
standard deviation σ, and by U(i, j) an uniform random variable in the interval [i, j].



makespan remains almost constant changing N and θ and the Greedy and So-

cial relocators provide the best makespans independently of the used allocator.

Job
type

Number
of jobs

Length
Arrival

time (in s)

Job set 0 (Figure 1)

C0 200
24% with length N (400k, 8k), 38% with length
N (200k, 4k), 38% with length N (100k, 2k)

U(0, 100)

C1 800
24% with length N (100k, 4k), 38% with length

N (50k, 2k), 38% with length N (25k, 1k)
U(0, 100)

Job set 1 (Figure 2)

C0, C4

500 per
type

20% with length N (500k, 40k), 38% with
length N (250k, 20k), 38% with length

N (125k, 10k)
U(0, 1000)

Job set 2 (Figures 3 and 4)

C0, C1

C2, C3

500 per
type

20% with length N (250k, 75k), 30% with
length N (100k, 30k), 30% with length

N (40k, 12k), 20% with length N (10k, 3k)
0, 25, 50, 75

Table 2: Lengths and arrival times of the job sets used in the three experiments.

In Figure 2 we compare how the Social and Min-Num relocators respond to
a variation of the owner load of a machine. We use the synthetic grid, and the job
set composed of two job types, namely C0 and C4: jobs arrive uniformly in the
interval [0, 1000] s and their lengths are represented by a three-step discretization
of a power law (more details described in section “Job set 1” of Table 2). The
owner load of all the four machines is initially set to 0, but the owner load of
machine m with speed vector S3 increases to 0.95 at the time instant 1500 s,
that is, it becomes essentially unavailable to the grid users. Plots in Figures 2(a),
2(b), and 2(c) show how jobs are distributed among machines with speed vectors
S0, S1, and S3, respectively, under the Social relocator (the plot for machine
S2 is omitted because it is identical to that of S1). A similar job distribution
holds for the Greedy relocator as well. Figures 2(d), 2(e), and 2(f) show job
distribution under the Min-Num relocators in machines with speed vectors S0,
S1, and S3, respectively. We notice that after the time instant 1500 s, the Social

relocator begins to migrate jobs from m to other machines (with the Greedy

relocator exhibiting a similar behavior): indeed, the increasing number of jobs
on the other machines is not due to new jobs, since no new job arrives after
the time instant 1000 s. It is also interesting to note that jobs are distributed
on machines according to their compositions: in particular, we observe that jobs
of type C4 (in cyan), dealing with large local data sets (i.e., C4[1] = 0.8), are
assigned by the allocator/relocator to m (i.e., S3), which has the fastest disk,
until the change in its owner load makes it essentially unavailable.
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Figure 1: Behavior of the Greedy, Social and Min-Num with varying N (on x-axis)
and θ (cyan solid curves θ = 10%, magenta dashed curves θ = 5%, black dotted curves
θ = 1%). θ is not defined for Min-Num.

We now analyze a more general scenario using the AEOLUS grid. Jobs are
described by composition vectors C0, C1, C2, and C3; job lengths follow a
four-step discrete discretization of a power law distribution, equal for all job
types (see section “Job set 2” of Table 2). Since similar jobs in this environment
are typically submitted in bursts, we consider four arrival times (0 s, 25 s, 50 s,
and 75 s), and in each one only jobs described by the same composition vector
arrive. Figure 3 provides the makespan (averaged on 5 simulation runs) of six
allocation schemes (Greedy, Social, Min-Num, each with and without the
respective relocator), for any of the 4! orderings of job arrival times by job
type. The mapping between permutation ID and the actual order of job types
is provided in the Appendix (Table 4).

In the analyzed scenario, the Greedy and Social relocators exhibit similar
performances as noted before; in contrast, the Min-Num relocator experiences
an average 10% performance loss. The experiment also provides evidence that,
when relocation is not used for its high computational cost, the Min-Num should
be avoided and the Social allocator is preferable to the Greedy one: indeed,
Greedy wins over Social in 21% of the permutations with at most a 11% gap,
while Social outperforms Greedy on 79% of these instances, and the gap is
more than 11% in 37% of the instances. It deserves to be noticed that Social

beats Greedy in particular in the first permutations, that is, when jobs with
composition vector C3 are the last jobs submitted into the grid. The new jobs
are allocated by the Greedy allocator to machines with speed vector S0, since
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(d) The machine with S0.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(e) The machine with S1.
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(f) The machine with S3.

Figure 2: Job distribution on the synthetic grid on machines described by speed vectors
S0, S1, and S3 (we remind that S1 = S2): in (a), (b), and (c) under the Social relo-
cator; in (d), (e), and (f) under the Min-Num relocator. In cyan jobs with composition
vector C4; in black jobs with composition vector C0. The x-axis reports the elapsed
time (range [0, 6500] s), the y-axis the number of jobs on the machine (range [0, 310]).

these machines have a smaller number of assigned jobs. However, the affinities
of these jobs decrease considerably (then, their execution times increase) and
they cannot be migrated to other machines since the relocator is disabled. This
problem is minimized in the Social allocator since the decrease in affinity of
other jobs is taken into account in the score function.

We conclude this section with Figure 4, where we added to the previous
scenario some owner load variations. Specifically, the owner load of the four
machines characterized by speed vectors S0, S6, S26, S19 increases to 0.95 at
time instants 0 s, 60 s, 100 s, 125 s, respectively. With relocation, performances are
similar to those described above regarding Figure 3 since the relocations spread
jobs from the four “nearly unavailable” machines to the remaining 66 machines.
In contrast, disabling relocations yields huge makespans, in particular under
the Min-Num allocator since it does not take into account the owner load of a
machine.

4 Conclusions and Future Work

In this paper, we have proposed a new framework for resource allocation in
desktop grid environments based on the idea of performing job assignments
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Figure 3: Makespan on the AEOLUS grid of six allocation schemes (Greedy, Social,
Min-Num, each with and without the respective rebalancing), for each of the 4! per-
mutations of job arrival times by job type (permutation IDs are listed in Table 4).

to the machines which best meet the computational requirements of the jobs.
Within this framework, we have developed and compared two different alloca-
tion schemes, which attempt to minimize the overall system makespan, even
without knowing the actual durations of the jobs submitted to the system. We
have argued that our strategy results in a proper, fair, and balanced allocation
of the jobs processed by the grid, and this translates into good results in terms
of completion time of the jobs. The proposed framework can be extended in sev-
eral ways: first, by introducing the concept of domain of a job, that is, allowing
a job to choose, on the basis of their hardware or software capabilities (e.g.,
CPU architecture, amount of RAM and disk space, operating system installed,
available software libraries), the subset of machines on which its computation
can be carried out (notice that this simple extension would add a new combi-
natorial dimension to the problem, since both the allocation and the relocation
choices would have to deal with intersecting domains); then, it would be useful,
for robustness and scalability purposes, to implement our scheduler in a dis-
tributed fashion; finally, this approach deserves to be implemented in a real grid
environment (such as the AEOLUS testbed), and possibly to compare its perfor-
mances with other state-of-the-art resource brokering systems and time-driven
scheduling strategies.
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Appendix

In this appendix we provide the speed vectors of the machines in the AEOLUS
grid, listed in Table 3, while Table 4 shows the mapping between permutation
IDs and arrival times, used in Figures 3 and 4.

Speed
vector

CPU
(GHz)

Disk
(MB/s)

Network
(KB/s)

S0 0.70 50 500

S1 0.80 50 500

S2 0.87 50 500

S3 0.90 50 500

S4 − S5 0.93 50 500

S6 1.00 60 500

S7 1.30 60 500

S8 1.40 60 500

S9 1.67 75 500

S10 − S15 1.70 70 500

S16 1.80 70 500

S17 − S19 2.00 100 500

Speed
vector

CPU
(GHz)

Disk
(MB/s)

Network
(KB/s)

S20 2.20 100 500

S21 2.40 100 500

S22 2.40 100 1000

S23 − S24 2.53 90 1000

S25 2.60 90 1000

S26 − S55 2.66 105 1000

S56 − S61 2.80 85 500

S62 − S63 2.83 100 500

S64 − S65 3.00 80 500

S66 − S67 3.10 80 500

S68 − S69 3.20 80 500

Table 3: Speed vectors of the 70 machines in the AEOLUS grid.

ID 0 s 25 s 50 s 75 s

1 C0 C1 C2 C3

2 C1 C0 C2 C3

3 C0 C2 C1 C3

4 C2 C0 C1 C3

5 C2 C1 C0 C3

6 C1 C2 C0 C3

7 C0 C1 C3 C2

8 C1 C0 C3 C2

ID 0 s 25 s 50 s 75 s

9 C0 C3 C1 C2

10 C3 C0 C1 C2

11 C3 C1 C0 C2

12 C1 C3 C0 C2

13 C0 C3 C2 C1

14 C3 C0 C2 C1

15 C0 C2 C3 C1

16 C2 C0 C3 C1

ID 0 s 25 s 50 s 75 s

17 C2 C3 C0 C1

18 C3 C2 C0 C1

19 C3 C1 C2 C0

20 C1 C3 C2 C0

21 C3 C2 C1 C0

22 C2 C3 C1 C0

23 C2 C1 C3 C0

24 C1 C2 C3 C0

Table 4: Arrival time of each job type for each permutation ID (see Figures 3 and 4).


